
Hazelnuts 101

Nutrients and Nutrient Management

What do plants need?

Plant Growth, Development & Yield

ravens

Plants require energy from the sun to supply light for photosynthesis and adequate temperatures for metabolic processes

- Carbon dioxide for organic matter formation and oxygen for respiration are also required
- Other requirements include water and nutrients

1. Energy:

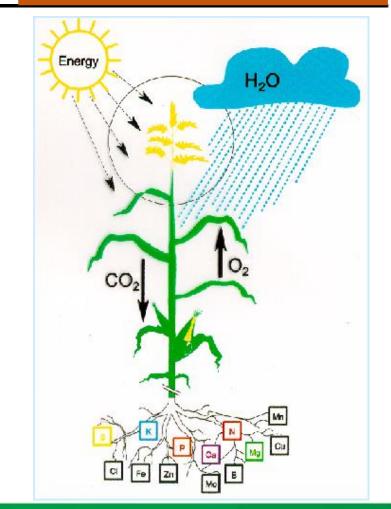
- Light for photosynthesis

(production of sugars, etc.)

- Temperature for metabolic processes

2. Gases:

- Carbon dioxide (CO_2) as basic component of carbohydrates, lipids and proteins


- Oxygen (O_2) as basic component and for catalytic respiration

3. Water: as basic component

4. Nutrients – micro and macro nutrients

What nutrients do plants need?

Plant Growth, Development & Yield

ravensdown

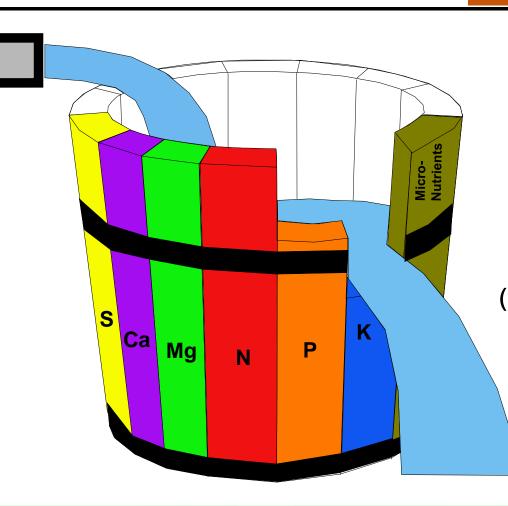
 In soil, nutrients interact with one other leading in changes to availability to plants

•

- If there is an imbalance or too much or too little of a particular nutrient, it can reduce the ability of a plant to access other nutrients
- pH can also alter the availability of nutrients

1. Macronutrients (require larger quantities):

- Nitrogen
- Phosphorus
- Potassium
- Calcium
- Magnesium
- Sulphur


2. Micronutrients (require smaller quantities):

- Iron
- Zinc
- Manganese
- Copper
- Boron
- Molybdenum
- Chloride

The Law of the Minimum (from Liebig 1843)

Nutrient Supply

 Liebig's law of the minimum states that the nutrient which is in the shortest supply (in this example K) limits plant growth, despite all other nutrients being in adequate supply

The element which is in shortest supply (in this case K), limits the yield

Soil tests - Cation exchange capacity (CEC)

 Soils with low organic matter often have low CEC

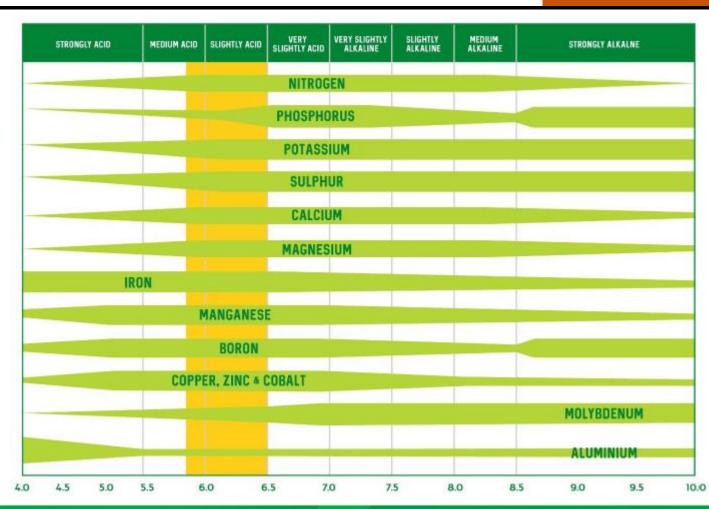
 Soils with lots of sticky clay often have higher CEC

 Sand and silt typically have lover CEC Plant nutrients exist as molecules floating around in the water content of the soil

- Some are positively charged (cations)
- Some are negatively charged (anions)
- Soil particles are negatively charged
- Opposites attract so positively charged molecules will bind to soil particles;
 Calcium, mag, potassium, sodium (NA+) etc are + charged

The amount of negative sites in a soil and so ability of the soil to hold cations is measured as the CEC

Soil Chemistry


HIGH C.E.C (H. -Many negatively charged soil particles are available for cations (positively charged) nutrients to bind to NO

The effect of pH (acidity)

Soil Chemistry

 Some nutrients become more or less available with changes in pH

Principals of nutrient supply from fertilisers and composts

 The best outcomes might require multiple small applications rather than a single large application

- Right rate
- Right place
- Right time

But how do we know what is the right product and right rate.....!!!!

How do we know what nutrients we have and/or need?

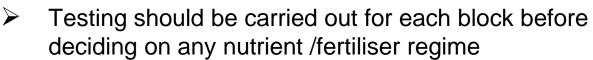
 Nutrient budgets help calculate crop removal plus losses plus amounts used for root and shoot development to give maintenance dressing requirements.

 Maintenance dressings will keep nutrient levels static.

• Capital dressings increase nutrient levels • Soil testing (15cm).....leaf testing, petiole and fruit testing

1st - testing for critical shortages that effect yield or productivity

2nd - testing for nutrient removal (or losses) to maximise production or quality


Soil tests are a <u>chemical measure</u> of a <u>biological system</u> -so are "variable"

"Looking at trends over time are important"

Soil Sampling - the first crucial step

• .

For some crops, soil tests can be complemented by plant/tissue analysis at specific growth stages.

Soil Sampling - protocol for cropping paddocks

- Soil sampling protocol aim to assess the average fertility of a paddock.
- Protocols should aim to collect as representative a sample as possible.
- Any unusual areas should be avoided.
- Repeated sampling will provide valuable information on trends over time.

- Take one sample (at least 15 cores) per block
- Use 15cm (6 inch) corer
- Set up transects using GPS, or permanent markers (such as tree lines).
- Collect cores from a transect, running any across cultivation lines.
- Avoid atypical areas e.g. fencelines, shelterbelts, gateways, troughs, irrigation runs, compacted areas.
- Repeat sampling at similar time of year (winter ideal).
 - DO NOT sample within 3 months of fertiliser application.

Variability in soil tests

- Soil tests are a chemical measure of a biological system
- Soil tests are inherently variable because of laboratory, spatial and temporal errors
- The different soil tests have a different degree of variability as shown
- In general as soil test levels increase so to does the variability

Soil test	Variability %	For example		
рН	2 – 5	рН 6.0 <u>+</u> 0.3		
K	20 – 30	K 6 <u>+</u> 3		
Olsen P	15 – 20	Olsen P 25 <u>+</u> 10		
S	20 – 40	S 10 <u>+</u> 6		

Soil N Tests

 There is no perfect Soil Nitrogen test, due to the soil N cycle moving relatively quickly.

 Mineral N test can be difficult to do due to the sampling depth required

Potentially Mineralisable Nitrogen (PMN) 'NEW'

- estimates amount of N available due to soil mineralisation.
- sampled to 15cm or 30cm depth.
- A 'new' calculator gives an estimate of how much N will become available each month over the next four months

Mineral Nitrogen test (ammonium and nitrate)

- provides a snap-shot of the immediately available mineral N
- usually sampled to 60-90cm depth
- Has being used by growers in early spring to determine how much N fertiliser should be applied.

These soil N tests are available through ARL

'Hawkeye' a free mapping tool to help nutrient management

 HawkEye will show where tests are taken from for consistent year on year soil testing by GPS

⊞

~

٢

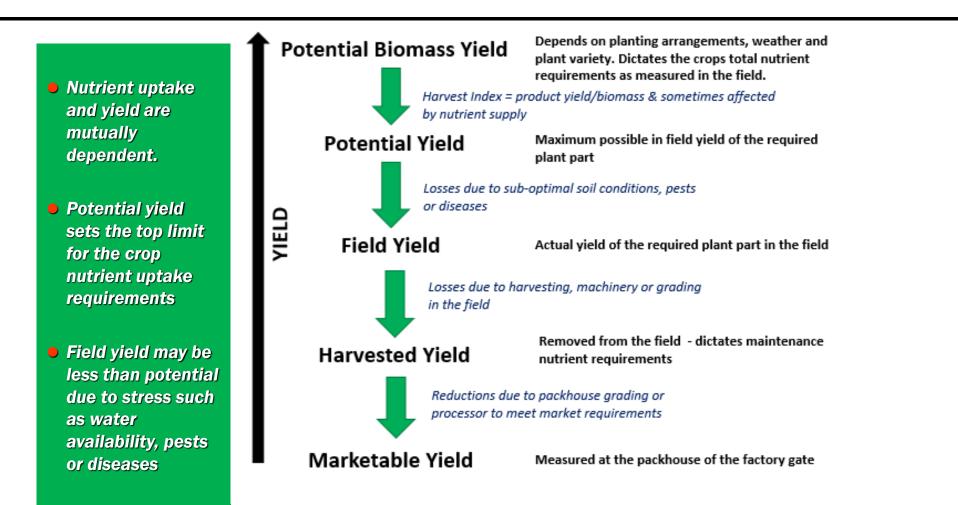
A

 Soil test results show on a spatial platform

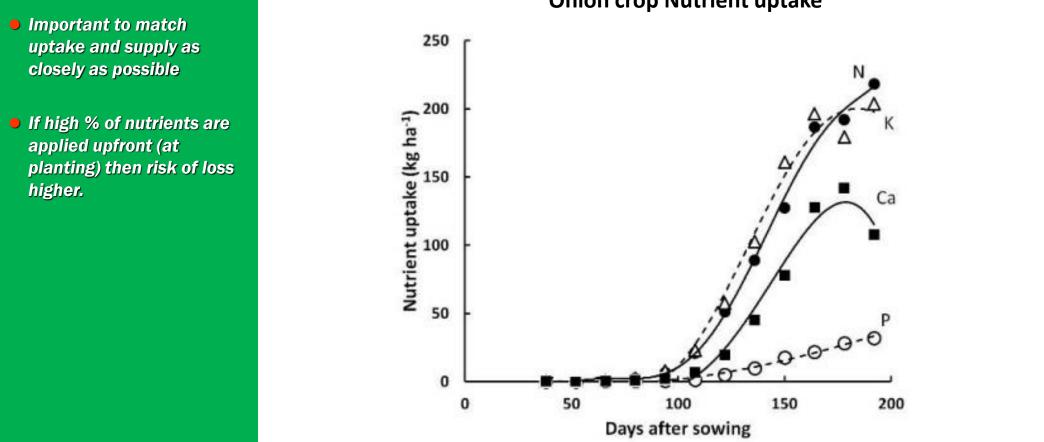
			Lo	cate someth	ing on my farr
ren -	Soil Test Res	sults			☆×
`	Showing soil test results for the following criteria:				
Nutrient Summary	Date Range	17th Aug 14 - 16th Au	^{ug 19} Sh ow optimals for	Brassic	a Fi 🔻
Soil Test Results	Analysis	Olsen Sol.	 Depth 	15 cm	•
Agronomy Plan	Crop		Blocks		
	стор	All		Whole	
			Reset to de	efaults Sh	ow all
	Date	Sample Name	Crop type Broccon	Depth	~
	24-Feb-2015	Cookie Hill	Brassica Fre	15 cm	Q
	04-Apr-2016	Cookie Hill	Brassica Fre	15 cm	Q
	01-Feb-2017	Cookie Hill	Brassica Fre	15 cm	Q
	30-Jan-2018	Cookie Hill	Brassica Fre	15 cm	Q
	29-Jan-2019	Cookie Hill	Brassica Fre	15 cm	Q
	13-Feb-2015	DC 1	Brassica Fre	15 cm	Q
	25-Jan-2017	DC 1	Brassica Fre	15 cm	Q
	25 Jan 2018	DC 1	Rraccica Fra	15 cm	Q.

Trends over time important

HawkEye will graph		Locate something on my farm (paddocks, addresses, place, fea
soil trends over time using HawkEye	≞ → 👛	Soil Test Results
mapping programme		(470) tests found meeting your criteria. Select a transect from the dropdown or map to see results.
	Nutrient Summary	Table result Trend graph
	Soil Test Results	Sample name Cookie Hill
	Agionomy ran	Analysis pH •
		Crop tested : Brassica Fresh Market Lab number : R8061991-22
		Stock type : HORTICULTURE Core length : 15 cm
		Soil type : Sedimentary Test date 29/01/2019 •
		View optimals by Brassica Fresh Market
		pH Olsen Sol. P
		2018019012018014 2018019012018014
		Calcium Magnesium


HawkEye Mapping - example of trends of pH over time

 Trends are important to show direction of soil nutrient status


Differing Yields and their relationships

We need to know what we are trying to achieve - yield for mature trees or growth for **avensdown** young trees as the approaches will differ.....

Matching nutrient supply with nutrient uptake

Plant Nutrients

Onion crop Nutrient uptake

Tissue testing - horticultural crops

Tissue Analysis

Two main reasons for testing crops:

When tissue testing

is important to

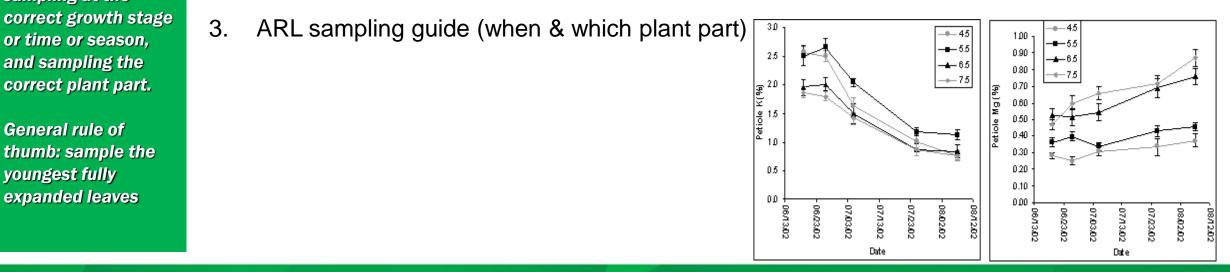
recommended

particular crop.

sampling at the

This includes

General rule of


youngest fully

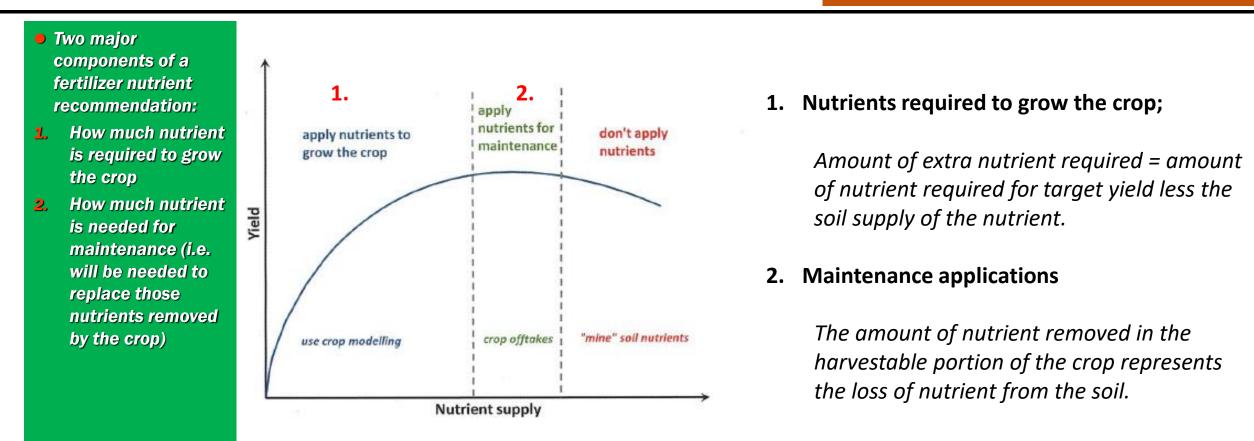
procedure for each

follow the

horticultural crops, it

- To monitor crop growth, particularly high value orchard crops. 1.
 - Specific trees/branches can/should be marked for sampling.
- As a **diagnostic tool** to investigate a particular problem with crop growth 2.
 - collect paired samples for comparison: healthy vs. affected.

Forms of nutrient supply


Nutrient Supply Products

 \succ Solid fertilisers \succ Granular fertilisers Compound fertilisers Blended fertilisers \succ Controlled release fertilisers ► Liquid fertilisers ➤ Suspension fertilisers \succ Foliar fertilisers Composts & other organic waste materials \succ Micobial-based fertilisers or soil amendments

Basic Nutrient recommendations

Principals of fertiliser recommendations

Upper limit of yield is set by crop characteristics and weather - not by adding more nutrients

Capital Applications of P, K & Mg.

Principals of fertiliser recommendations

 Because soil samples are taken from 15cm depth in hort situations, capital fertiliser inputs need to be doubled compared to pastoral paddocks to generate the same lift in soil fertility.


 It is normally uneconomic to lift the K status of sedimentary soils and ash soils – full or partial replacement of K removed is often more appropriate. Amount of capital fertiliser (kg/ha) required to increase soil test results by 1 unit for various soils where fertiliser is incorporated to 15cm depth.

	Soil type	Average (range)			
Phosphate	Sedimentary	10 (8-12)			
	Pumice & Peat	13 (10-16)			
	Volcanic Ash	22 (14-36)			
Potassium	Soil type	Average (range)			
	Most Sedimentary	250 (200-500)			
	Pumice	90 (70-120)			
	Volcanic Ash	120 (90-160)			
Magnesium	Soil type	Estimated Average (range)			
	All mineral soils	15 (8-20)			

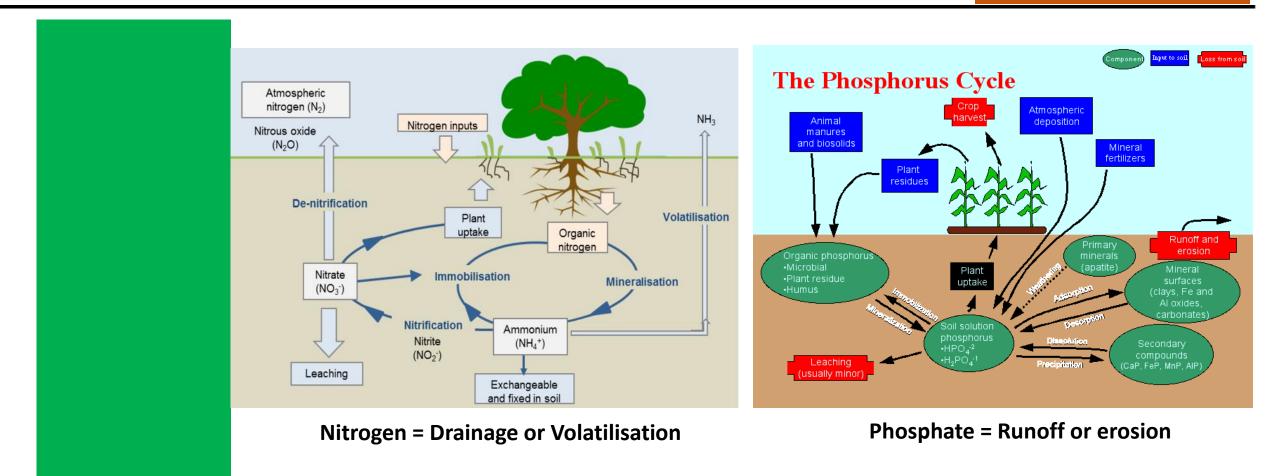
Nitrogen: the most important nutrient for crops

Soil Nitrogen

become available during the life of the crop

from the soil organic matter

ravensdown


Nutrients for Hazel Nuts

- Base fertility should be built up before planting
- Tolerant of lime rich soils with pH 6 to 7
- Surface apply fertiliser not in planting hole
- Early applications on new plantings should be to encourage growth i.e. a Nitrogen rich balanced NPK mix such as Nitrophoska Select
- When nut production starts apply balanced fert in spring. Take care on lighter soils - split applications may be better suited to reduce losses
- Do leaf analysis on mid-shoot leaves in January

Nutrient loss pathways (N & P)

Nutrient Management

Role of OverseerFM – what it models

 Useful to view trends over time (years) of nutrient balances and losses.

- Cannot be used to represent withinseason variations
- Greenhouse gas emissions (t/ha e-CO2)

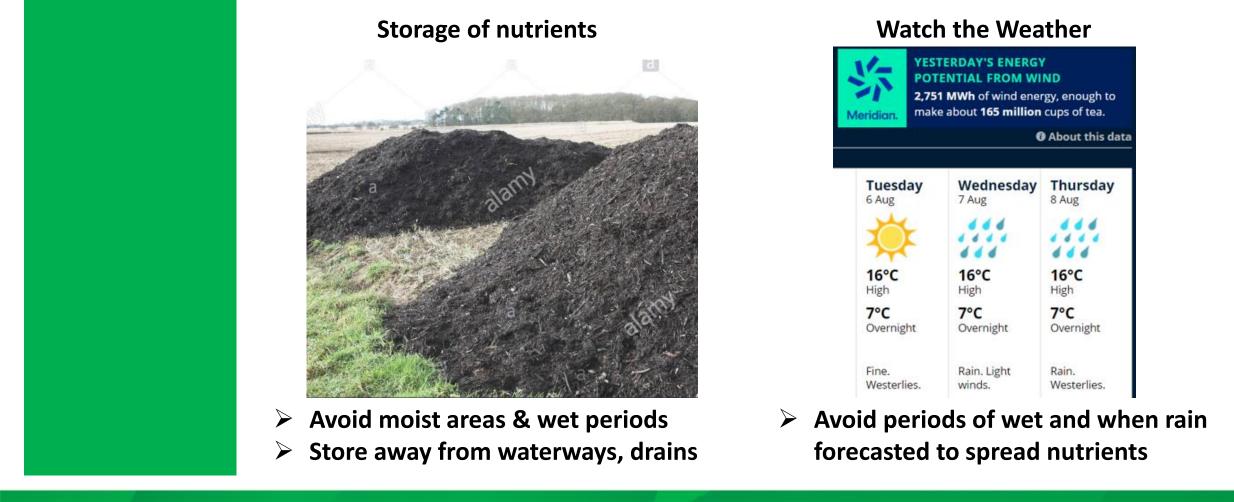
Overseer models the cycling and flow of nutrients to estimate;

- ✓ Losses of key nutrients including N & P
- ✓ Losses of Agricultural greenhouse gases
 - Balance of inputs and outputs of essential plant nutrients to indicate sustainability of nutrient supply to plants
- Effect of different crop rotations, nutrient inputs, residue management and fallow periods on availability or losses of nutrients

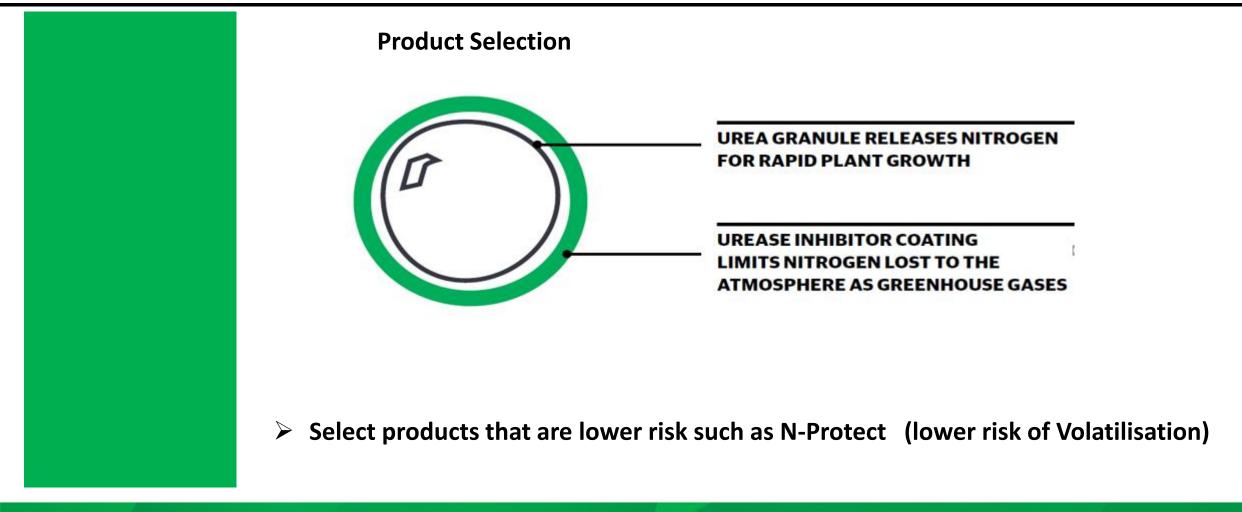
(kg/ha/yr)	N	Ρ	К	S	Ca	Mg	Na
Nutrients added				·		·	
Fertiliser, lime & other	2	0	0	0	3	0	0
Rain/clover N fixation	30	0	3	6	4	9	51
Irrigation	15	1	9	15	55	13	56
Nutrients removed							
As products	1	0	2	0	0	0	0
Exported effluent	0	0	0	0	0	0	0
As supplements and crop residues	0	0	0	0	0	0	0
To atmosphere	9	0	0	0	0	0	0
To water	17	0.2	7	28	53	11	44
Change in farm pools							
Plant Material	0	0	0	0	0	0	0
Organic pool	19	18	0	-8	0	0	0
Inorganic mineral	0	-1	-18	0	-5	-9	-10
Inorganic soil pool	0	-17	21	0	13	18	72

Nutrient Budgeting

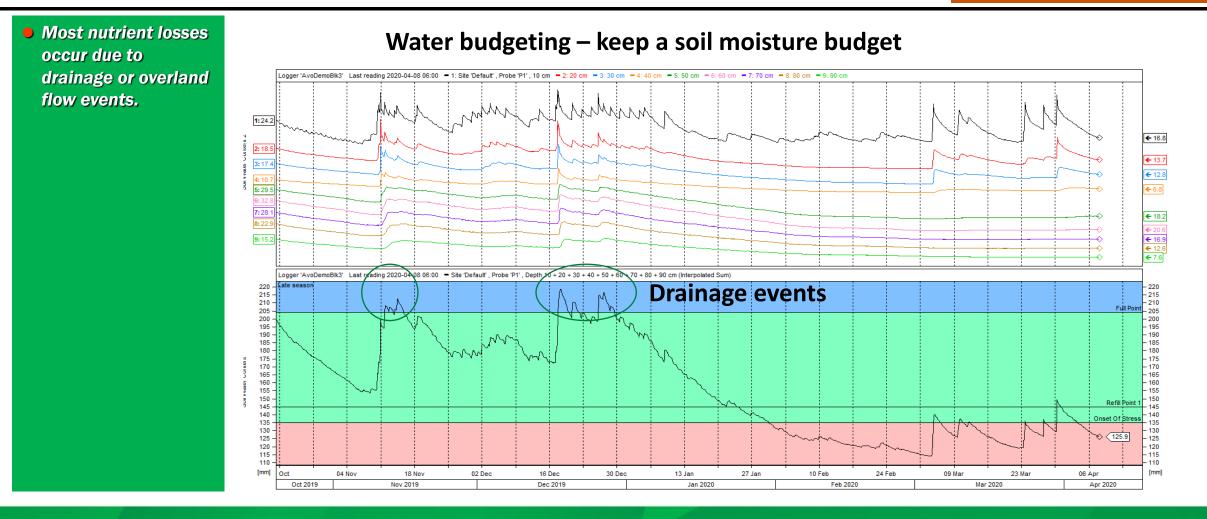
avensdown


Reducing Nutrient losses

Use calibrated spreaders



Reducing Nutrient losses



Reducing Nutrient losses

Reducing Nutrient losses

ravensdown

Reducing Nutrient losses

 Most nutrient losses occur due to drainage or overland flow events.

- Soil test every paddock & before every crop (and well before planting)
- > Look and monitor soil nutrient trends over time (including organic C)
- > Use <u>certified nutrient advisors</u> to help develop a nutrient programme
- Remember the 4R's
- Match nutrient applications to plant growth stage and plant requirements
- Split nutrient applications
- Calibrate application equipment regularly
- Lower soil temps = lower rates of Nitrogen
- > Avoid hot windy periods when surface applying urea (incorporate into soil)
- > Keep a soil moisture budget (avoid excess irrigation)
- ➢ Minimise <u>fallow</u> periods
- > Minimise <u>cultivation</u> (use precision ag practices where practical)
- Avoid surface run-off

